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Background: Physical exercise has a significant effect on the hypothalamic-pituitary-testicular (HPT) 
axis and testosterone secretion. Testosterone levels can increase or decrease depending on the type, duration 
and intensity of exercise. This effect is mediated via complex and multilevel mechanisms that involve the 
activation of the stress system and the hypothalamic-pituitary-adrenocortical (HPA) axis, as well as, the 
secretion of major anabolic and metabolic hormones, such as cortisol and insulin growth factor-1 (IGF-1). 
After a bout of exercise, the HPT axis recovers, however the rapidity and magnitude of the recovery are not 
known. This is particularly important for the assessment of athletes for possible testosterone doping. 
Methods: In this study, we measured testosterone, LH, FSH, DHEAS, cortisol and IGF-1 levels, in  
16 male participants in the 246 Km “Spartathlon” (up to 36-hour continuous, prolonged, brisk exercise) race, 
at three different time points; before the race (Phase I), at the end of the race (Phase II) and 48 h postrace 
(Phase III).
Results: We found that testosterone, LH, FSH and IGF-1 levels decreased dramatically in Phase II. 
Testosterone and IGF-1 only partially recovered at Phase III to about half the Phase I values. The HPA axis 
hormones levels, DHEAS and cortisol increased significantly at Phase II and returned to normal at Phase III. 
Conclusions: The observed alterations of HPT axis and IGF-1 hormone levels in runners of the 
“Spartathlon” race, suggest that prolonged exercise suppresses testosterone and IGF-1, which remain 
partially suppressed for at least 48 hours, even after the HPA axis has recovered. We suggest that each 
exercise regimen results in a different hormonal response and recovery phase and should be taken into 
consideration when assessing athletes for doping.
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Introduction

Physical exercise has a major impact on male physiology 
affecting significant hormonal axes, such as the hypothalamic-
pituitary-testicular (HPT) and -adrenal (HPA) axes (1,2). 
Testicular and adrenal androgens, namely testosterone and 
dehydroepiandrosterone (DHEA), have anabolic effects on 
the skeletal muscles mainly by increasing protein synthesis. 
This in turn results in muscle growth, and the development 
of physical fitness (3,4). On the other hand, cortisol, the 
final product of the HPA axis, is released during the stress 
of exercise to facilitate adaptive responses, so that the 
organism can find a new dynamic equilibrium to maintain 
homeostasis (1,5). To facilitate this energy demanding 
process cortisol also stimulates the breakdown of stored 
energy; carbohydrates, fat and protein and promotes 
gluconeogenesis, storing glucose in an easily accessible form 
(6,7). The impact of exercise however in these hormones 
varies and depends on the intensity and duration of the 
activity (8). Thus, although short-term exercise can increase 
testosterone levels (9), strenuous exercise suppresses 
testosterone concentrations by complex mechanisms that 
affect the entire HPT axis (10). Indeed, in endurance-
trained men, especially runners, a reduction in circulating 
levels of total and free testosterone and alterations in the 
release of luteinizing hormone (LH) have been repeatedly 
measured (11,12). The HPA axis is also differently affected 
by the acute or chronic stress of exercise (2). Short-term 
intensive and moderately prolonged exercise leads to 
elevation in cortisol levels, as a result of the acute stress 
and the higher demand of energy (13). Research findings 
on long-term exercise however, have been contradictory. 
There are studies that show that sustained chronic stress 
or physical uninterrupted daily training leads to elevated 
cortisol levels (12,13) but there are also studies that show 
a decrease in cortisol levels after long-term endurance 
training or competition (14). DHEA(S) the precursor of the 
more potent sex hormones, testosterone and estrogens, is 
also stimulated by stress (15). IGF-1 also mediates some of 
the beneficial effects of exercise, especially associated with 
the re-modelling mechanisms of muscles during the post-
exercise recovery (16,17). It is secreted by the liver into the 
circulation, but it is also synthesised and secreted locally 
in tissues and cells such as the satellite cells and myoblasts 
in skeletal muscle (16,18). IGF-1 has both anabolic 
effects, such as the stimulation of cell cycle initiation and 
progression and satellite cell activation, proliferation, 
survival, and differentiation (18), and metabolic effects, such 

as triggering of protein synthesis, free fatty acid use, and 
insulin sensitivity enhancement (19,20). On the other hand, 
the effects of exercise on IGF-1 have also been variable 
depending on the type and duration of exercise (21-23). 
Because of their anabolic effects both androgens and growth 
hormone have been used by athletes to enhance their 
athletic performance. The aim of this study was to assess 
the changes of the HPT and HPA axes and IGF-1 levels in 
athletes participating in the super-marathon Spartathlon. 

Methods

Subjects and exercise protocol

“Spartathlon” is an official international supermarathon 
held annually at the end of September in Greece. This 
athletic event based on the historical run of Philippides, 
an Athenian, who in 490 BC covered 246 kilometers 
(approximately 5 marathons), in a day and a half, from 
Athens to Sparta, to enlist the Spartans’ help against the 
Persians. This supermarathon is a type of continuous with 
moderate intensity exercise of 246 km distance, during 
which runners attempt to cover the same distance from 
Athens to Sparta. Our study performed the “Spartathlon 
2016”. The study protocol was approved from the Bioethics 
Committee of the Harokopio University, Laboratory 
of Nutrition and Clinical Dietetics. All experimental 
procedures conformed to the National Health and Medical 
Research Council guidelines for experimentation with 
human subjects. The ambient daily temperatures ranged 
from 32–36 ℃ in planes and 8–10 ℃ in highlands with 
mean daytime relative humidity was 60–85%. All potential 
participants (n=85) were informed of the purpose and 
procedures of the study and gave an informed written 
consent prior to participation in the study. The data of 
this study were derived from 16 healthy male subjects 
who participated to the Spartathlon race 2016 (median 
age 40 years, range 31–46 years) and finished the race in 
less than 36 h [mean, median running times were 32:08,  
30.02 (h:min), range 25:17–34:43]. The athletes’ body mass 
index 21.2±1.8 kg/m2 was calculated at Phase I.

Sampling and analysis of blood

Blood samples were collected from the participants prior 
to race start, immediately after (within 15 minutes) the end 
of the event, while the final sample was obtained at the 
recovery period; at 48 h post-race. The subjects consumed 
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electrolytes and carbohydrates ad libitum before, during 
and after running. The samples were stored frozen at −80 ℃ 
until assayed.

Analytical methods

All subjects were tested at same time of the day at three 
phases: before the race (Phase I), at the end (Phase II) of 
the race and 48 hours postrace (Phase III). Blood samples 
were assayed for testosterone, DHEAS, LH, FSH, cortisol 
and IGF-1. All immunoassays were performed with an 
electrochemiluminescense technique using the Roche 
Cobas e 411 immunoassay analyzer (Roche Diagnostics 
Mannheim, Germany).

Statistical analyses

Data are presented as mean ± SEM, and the level of 
statistical significance was considered at P<0.05. Descriptive 
statistics and ANOVA repeated measures models were 
applied in order to determine the differences between time 
points of the “Spartathlon” athletic event. All the statistical 
procedures were performed using the STATGRAFICS 
PLUS version 5.1 for Windows program (Graphic Software 
System).

Results

Table 1 summarizes the main results of the study. The data 
for the HPT axis hormones; testosterone, LH and FSH, 
are shown in Figure 1A, B and C respectively. There was a 

Table 1 Hypothalamic-pituitary-testicular and adrenal axis 
hormone levels (mean ± SEM) examined in athletes that successfully 
completed the 2003 “Spartathlon” 

Parameter Phase I Phase II Phase III

Testosterone (ng/dL) 460.5±34.2 108.4±17.7 233.7±18.1
a

LH (IU/L) 3.9±0.4 1.7±0.2 4.1±0.5
b

FSH (IU/L) 4.4±0.5 2.6±0.4 3.2±0.4
c

Cortisol (µg/dL) 13.9±1.1 31.1±2.5 12.2±1.4
d

DHEAS (µg/dL) 162.9±17.7 294.9±40.8 168.0±22.1
e

IGF-1 (ng/mL) 147.7±11.5 101.4±7.3 117.2±6.5
f

ANOVA repeated measures: 
a
, P<0.001; 

b
, P<0.001; 

c
, P=0.009; 

d
, 

P<0.001; 
e
, P=0.003; 

f
, P=0.002.

Figure 1 Box-Plot (5–95th percentiles) of testosterone (A), 
LH (B) and FSH (C) levels in 16 athletes participating in the 
ultramarathon race Spartathlon (246 Km) at Phase I, at Phase II, 
and Phase III (ANOVA repeated measures: P<0.001, P<0.001 and 
P=0.009, respectively).
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significant decrease of the levels of testosterone (Phase I: 
460.5±34.2 ng/dL, Phase II: 108.4±17.7 ng/dL), LH (Phase 
I: 3.9±0.4 IU/L, Phase II: 1.7±0.2 IU/L) and FSH (Phase I: 
4.4±0.5 IU/L, Phase II: 2.6±0.4 IU/L). Testosterone only 
partially recovered at Phase III to about half the Phase I  
values (Phase III: 233.7±18.1 ng/dL). LH returned to  
Phase I values (Phase III: 4.1±0.5 IU/L), while FSH tended 
to return to these values (Phase III: 3.2±0.4 IU/L).

The circulating levels of the HPA axis hormones cortisol 
and DHEAS increased significantly at the Phase III. 
Specifically, cortisol concentration was 13.9±1.1 µg/dL at 
Phase I and 31.1±2.5 µg/dL at Phase II, while the DHEAS 
concentrations were respectively 162.9±17.7 and 294.9± 
40.8 µg/dL. Cortisol values were slightly lower at Phase III 
12.2±1.4 µg/dL in comparison to its Phase I values, while 
DHEAS values returned to normal at Phase III 168.0± 
22.1 µg/dL (Figure 2A,B). 

A significant decrease in the IGF-1 levels was also 
noticed at phase II 101.4±7.3 ng/mL compare to Phase I 
147.7±11.5 ng/mL. The IGF-1 levels although increased 
at Phase III 117.2±6.5 remained lower than the Phase I 
(Figure 2C).

Discussion

In this study, we found major alterations in the secretion 
of HPT axis hormones in runners who participated in 
the 2016 “Spartathlon”. Circulating testosterone levels 
decreased significantly at the end of the run and only 
partially recovered 48 hours post run to about half the pre-
run values. Thus, continuous, prolonged, brisk exercise, 
suppresses the end-hormone of the HPT axis with only 
partial recovery 48 hours postrace. Our results are in 
agreement with previous studies (24-26) which have 
suggested various mechanisms to explain this testosterone 
drop, including a decrease in the testicular blood flow (27), 
an increase in testosterone utilization to repair the damaged 
tissues (28), and/or suppressed hypothalamic and pituitary 
production of GnRH and LH and FSH respectively (29,30).

A significant decrease in LH and FSH levels also 
occurred at the end of competition with return to the pre-
race levels 48 hours later suggesting that the resulting 
transient hypogonadism is most likely centrally mediated. 
Strenuous exercise inhibits the HPT axis at all levels, via 
activation of the HPA axis (2). Corticotrophin releasing 
hormone (CRH) suppresses gonadotropin-releasing 

Figure 2 Box-Plot (5–95th percentiles) of cortisol (A) and DHEAS 
(B) and IGF-1 (C) levels in 16 athletes participating in the 
ultramarathon race Spartathlon (246 Km) at Phase I, at Phase II, 
and Phase III (ANOVA repeated measures: P<0.001, P=0.003 and 
P=0.002, respectively).
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hormone (GnRH) secretion from the GnRH neurons (31), 
either through direct effects or via the release of β-endorphin 
which is also secreted during exercise. On the other hand, 
glucocorticoids also exert inhibitory effects at the level of 
GnRH neuron, the pituitary gonadotroph, as well as the 
testes and render target tissues resistant to testosterone (32). 
Corticotropin-releasing hormone can also exert a negative 
impact on the LH effects in Leydig cells (33).

In our study, besides the HPT axis, the HPA axis was 
also affected by prolonged physical exercise, albeit inversely. 
More specifically, DHEAS and cortisol levels significantly 
increased at the end of the run, with DHEAS levels 
returning to normal, 48 hours post run, while cortisol levels 
although returned to normal at that time, remained slightly 
decreased. Elevated cortisol concentrations at the end of the 
race, consistent with activation of the stress system, were 
expected, as the body’s response to the stress of exercise 
and enhanced glucose needs (1,34). These results are in 
agreement with previous studies suggesting that endurance 
training is associated with subclinical hypercortisolism 
(13,24,25). Nevertheless, there are also studies that reported 
lower cortisol levels after endurance training, possibly 
reflecting post-stress adrenal suppression (35). 

On the other hand, during stress, inflammation releases 
cytokines which suppress the reproductive function at 
multiple levels (36,37). These effects are mediated via 
activation of hypothalamic neurons that secrete CRH and 
POMC-derived peptides, as well as by peripherally secreted 
glucocorticoids (31,32). We have previously reported that in 
athletes participating in the Spartathlon race, interleukin 6  
(IL-6), C-reactive protein (CRP), serum amyloid A (SAA) 
and free plasma DNA levels increased significantly at 
the end of the race (38). However, and although IL-6 
levels returned to normal 48 hours later, CRP, SAA and 
free plasma DNA remained elevated. It is quite possible 
that continuous, prolonged physical exercise results in 
significant tissue damage, that leads to inflammation which 
in turn triggers the stress system that mobilizes all necessary 
machinery to restore homeostasis via a new dynamic 
equilibrium and development of physical fitness (39). These 
highly consuming energy steps take place at the expense of 
gonadal activity. The organism diverts all its homeostatic 
mechanisms towards the repair of damaged tissue and 
the fight of the inflammation shutting down testosterone 
production and spermatogenesis. This is mediated through 
activation of the HPA axis and elevation of its end product 
cortisol (40). After the stress stimulus is over, cortisol levels 
return to normal but testosterone levels remain suppressed. 

Clinical experience shows that after discontinuation of 
drugs, such as opioids and glucocorticoids, or any stress 
stimulus, that suppress the gonadal axis, testosterone 
levels and complete restoration of the HPT axis lags 
behind. Several studies have shown that testosterone levels 
differ between trained and sedentary men (41,42) and 
this difference (elevated or decreased testosterone levels) 
depends on the type of training. Previous studies have 
shown increased testosterone levels in sprint-trained athletes 
when compared with endurance-trained athletes (10,42), 
while endurance-trained athletes have lower testosterone 
levels than sedentary control subjects (11,41,42). 

Although IGF-1 mediates most of the peripheral actions 
of GH (43), a major stress hormone, it was significantly 
decreased at the end of the race. These results are in 
agreement with previous studies which show decrease 
of IGF-1 levels after prolonged strenuous exercise (44). 
Both fasting and exercise decrease IGF-1 levels in blood, 
most likely signaling the negative energy status, but up-
regulate GH signaling locally, resulting in increased IGF-1  
synthesis in skeletal muscles (45-47). The latter mediates 
the repairing and hypertrophic effects of exercise (17,47). 
Although IGF-1 synthesis in the liver is regulated directly 
by the GH release from the anterior pituitary, IGF-1  
production can also be activated locally induced by 
mechanical-stretch stimuli (18). Therefore, the decrease 
in IGF-1 in the circulation, seen in our study, at the end of 
the run is most likely consistent with an energy deficient 
catabolic stress state and follows a distinct regulation 
from the local IGF-1 production in muscles. Interestingly, 
testosterone and IGF-1 levels followed a parallel change, 
reflecting the negative energy balance of the ultra-distance 
foot race. Similarly, with the effect on testosterone, short 
duration exercise increases IGF-1 levels (21,22). 

In summary, runners participating in the “Spartathlon” 
demonstrate a significantly altered hormonal status, as 
reflected by the activity of the HPT and HPA axes and 
IGF-1 levels. These hormonal responses differ from those 
elicited by sprint exercise. We therefore suggest that each 
exercise regimen may elicit a different hormonal response 
and exhibit a different recovery pattern that should be taken 
into consideration when assessing athletes for possible 
doping during and after a bout of strenuous short term or 
prolonged exercise.
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